Login / Signup

Topology-Guided Design for Sc-soc-MOFs and Their Enhanced Storage and Separation for CO2 and C2-Hydrocarbons.

Jian-Wei ZhangPeng QuMan-Cheng HuMan-Cheng HuYu-Cheng JiangQuan-Guo Zhai
Published in: Inorganic chemistry (2019)
Evaluating the effect of ligand substitution on metal ions and/or clusters during the MOF growth process is conducive to rational design of isoreticular MOFs with improved performance. Through topological direction and ligand substitution strategy, we herein constructed two Sc-soc-MOFs (Sc-EBTC and Sc-ABTC) based on two similar rectangular-planar diisophthalate ligands, linear-shaped H4EBTC (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid) and zigzag-shaped H4ABTC (3,3',5,5'-azobenzenetetracarboxylic acid), under solvothermal conditions with formic acid as a modulator. {Sc[(Sc3O)(H2O)3]3(EBTC)6} (Sc-EBTC) possesses two distinct clusters as SBUs, trinuclear [Sc3O(CO2)6] (SBU1) and mononuclear cluster [ScO6] (SBU2), which maintain the soc-topology except for the mononuclear [ScO6] instead of the corresponding trinuclear [Sc3O(CO2)6] in Sc-ABTC ({(Sc3O)(H2O)3(ABTC)1.5(NO3)}). Notably, Sc-EBTC represents a rare soc-MOF with two distinct clusters as SBUs. Due to similar pore spaces, the two Sc-soc-MOF materials both exhibit enhanced and comparable gas sorption and selectivity performances. Specially, their remarkable C2H2, C2H4, and CO2 storage capacity along with prominent CO2/CH4 and C2-hydrocarbons/CH4 separations indicate that these Sc-soc-MOFs are promising adsorbents for natural gas purification under ambient conditions.
Keyphrases
  • metal organic framework
  • room temperature
  • wastewater treatment
  • mass spectrometry
  • air pollution
  • peripheral blood
  • quantum dots
  • heavy metals
  • particulate matter
  • capillary electrophoresis
  • anaerobic digestion