Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics.
Danqing WangJingtian HuGeorge C SchatzTeri W OdomPublished in: The journal of physical chemistry letters (2023)
This paper describes how two-dimensional plasmonic nanoparticle lattices covered with microscale arrays of dielectric patches can show superlattice surface lattice resonances (SLRs). These optical resonances originate from multiscale diffractive coupling that can be controlled by the periodicity and size of the patterned dielectrics. The features in the optical dispersion diagram are similar to those of index-matched microscale arrays of metal nanoparticle lattices, having the same lateral dimensions as the dielectric patches. With an increase in nanoparticle size, superlattice SLRs can also support quadrupole excitations with distinct dispersion diagrams. The tunable optical band structure enabled by patterned dielectrics on plasmonic nanoparticle arrays offers prospects for enhanced nonlinear optics, nanoscale lasing, and engineered parity-time symmetries.