Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.