Crosslinked Polydicyclopentadiene Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly Approach.
Honggang MeiBingjie ZhaoHuaming WangSixun ZhengPublished in: Macromolecular rapid communications (2021)
In this communication, the preparation of crosslinked polydicyclopentadiene (PDCPD) nanoparticles via ring-opening metathesis polymerization (ROMP)-induced self-assembly approach is reported. For the ROMPs, the macromolecular chain transfer agents (Macro-CTAs) are synthesized via the ring-opening polymerization (ROP) of ε-caprolactone (CL) with cis-2-butene-1,4-diol as the initiator. The ROMPs are performed with chloroform, tetrahydrofuran, toluene, 1,4-dioxane, and N,N-dimethylacetamide as the solvents, respectively, which are catalyzed with Grubbs second generation catalyst. It is found that the crosslinked PDCPD nanoparticles are obtained with spherical, cylindrical to planar morphologies, depending on the molecular weights of Macro-CTAs, the concentrations of DCPD and the natures of solvents. The polymerization induced self-assembly (ROMPISA) by the use of a non-norbornene-based macromolecular chain transfer agent provides a new and efficient approach to prepare crosslinked polymer nanoparticles.