Enhancing the health benefits of air quality improvement: a comparative study across diverse scenarios.
Chuang HanChuanlong ChengYing LiuQidi FangChunyu LiFeng CuiXiujun LiPublished in: Environmental science and pollution research international (2024)
In many studies, linear methods were used to calculate health benefits of air quality improvement, but the relationship between air pollutants and diseases may be complex and nonlinear. In addition, previous studies using reference number as average number of diseases may overestimate the health benefits. Therefore, the nonlinear model estimation and resetting of the reference number were very important. Hospital admission data for coronary heart disease (CHD), meteorological data, and air pollutant data of Zibo City from 2015 to 2019 were collected. The generalized additive model (GAM) was used to explore the association between air pollutants and hospital admission for CHD, and to evaluate the effects on health benefits under different reference number settings. A total of 21,105 hospitalized cases for CHD were reported in Zibo during the study period. The results of the GAM showed there was a log-linear exposure-response relationship between O 3 and hospital admissions for CHD, with RR (relative risk) of 1.0143 (95% CI: 1.0047 ~ 1.0239). There were log-nonlinear exposure-response relationships between PM 10 , PM 2.5 , SO 2 , and hospital admissions for CHD. With the increase of pollutants concentrations, the risk for hospital admission showed a trend of increasing first and then decreasing. Compared with the average hospital admissions as the reference number, health benefits calculated by hospital admissions predicted by the GAM model yielded lower. Using the World Health Organization air quality guidelines as reference, attributable fractions of O 3 , PM 10 , and PM 2.5 were 1.97% (95% CI: 0.63 ~ 3.40%), 11.82% (95% CI: 8.60 ~ 15.24%), and 11.82% (95% CI: 8.79 ~ 15.04%), respectively. When quantifying health benefits brought by improving air quality, corresponding calculation methods should first be determined according to the exposure-response relationships between air pollutants and outcomes. Then, applying the average hospital admissions as reference number may overestimate health benefits resulting from improved air quality.
Keyphrases
- healthcare
- public health
- mental health
- quality improvement
- air pollution
- heavy metals
- emergency department
- particulate matter
- health information
- health promotion
- electronic health record
- climate change
- skeletal muscle
- patient safety
- metabolic syndrome
- human health
- insulin resistance
- social media
- polycyclic aromatic hydrocarbons
- adverse drug