Login / Signup

Machine Learning Identification of Obstructive Sleep Apnea Severity through the Patient Clinical Features: A Retrospective Study.

Antonino ManiaciPaolo Marco RielaGiannicola IannellaJérôme René LechienIgnazio La MantiaMarco De VincentiisGiovanni CammarotoChristian Calvo-HenríquezMilena Di LucaCarlos-Miguel Chiesa-EstombaAlberto Maria SaibeneIsabella PollicinaGiovanna StiloPaola Di MauroAngelo CannavicciRodolfo Lugo SaldañaGiuseppe MagliuloAntonio GrecoAnnalisa PaceGiuseppe MeccarielloSalvatore CocuzzaClaudio Vicini
Published in: Life (Basel, Switzerland) (2023)
Artificial intelligence could be applied to patients with symptoms related to OSA to identify individuals with a severe OSA risk with clinical-based algorithms in the OSA framework.
Keyphrases
  • obstructive sleep apnea
  • machine learning
  • artificial intelligence
  • positive airway pressure
  • big data
  • deep learning
  • sleep apnea
  • early onset
  • case report
  • sleep quality
  • depressive symptoms
  • bioinformatics analysis