Login / Signup

The Impact of Well-Field Configuration on Contaminant Mass Removal and Plume Persistence for Homogeneous versus Layered Systems.

Zhilin GuoMark L Brusseau
Published in: Hydrological processes (2017)
A three-dimensional numerical model was used to simulate the impact of different well-field configurations on pump-and-treat mass removal efficiency for large groundwater contaminant plumes residing in homogeneous and layered domains. Four well-field configurations were tested, Longitudinal, Distributed, Downgradient, and natural gradient (with no extraction wells). The reductions in contaminant mass discharge (CMDR) as a function of mass removal (MR) were characterized to assess remediation efficiency. Systems whose CDMR-MR profiles are below the 1:1 relationship curve are associated with more efficient well-field configurations. For simulations conducted with the homogeneous domain, the CMDR-MR curves shift leftward, from convex-downward profiles for natural gradient and Longitudinal to first-order behaviour for Distributed, and further leftward to a sigmoidal profile for the Downgradient well-field configuration. These results reveal the maximum potential impacts of well-field configuration on mass-removal behaviour, which is attributed to mass-transfer constraints associated with regions of low flow. In contrast, for the simulations conducted with the layered domain, the CMDR-MR relationships for the different well-field configurations exhibit convex-upward profiles. The nonideal mass-removal behaviour in this case is influenced by both well-field configuration and back diffusion associated with low-permeability units.
Keyphrases
  • magnetic resonance
  • computed tomography
  • heavy metals
  • risk assessment
  • molecular dynamics
  • drinking water
  • dna methylation
  • genome wide
  • monte carlo
  • health risk