Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets.
José L MovillaJosep PlanellesJuan Ignacio ClimentePublished in: The journal of physical chemistry letters (2020)
We show theoretically that carriers confined in semiconductor colloidal nanoplatelets (NPLs) sense the presence of neighbor, cofacially stacked NPLs in their energy spectrum. When approaching identical NPLs, the otherwise degenerate energy levels red-shift and split, forming (for large stacks) minibands that are several millielectronvolts in width. Unlike in epitaxial structures, the molecular behavior does not result from quantum tunneling but from changes in the dielectric confinement. The associated excitonic absorption spectrum shows a rich structure of bright and dark states, whose optical activity and multiplicity can be understood from reflection symmetry and Coulomb tunneling. We predict spectroscopic signatures that should confirm the formation of molecular states, whose practical realization would pave the way for the development of nanocrystal chemistry based on NPLs.