Login / Signup

Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe2O4/Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media.

Xiuju WuYanli NiuBomin FengYanan YuXiaoqin HuangChangyin ZhongWeihua HuChang Ming Li
Published in: ACS applied materials & interfaces (2018)
Exploring sustainable and efficient electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is necessary for the development of fuel cells and metal-air batteries. Herein, we report a bimetal Fe/Mn-N-C material composed of spinel MnFe2O4/metallic Fe hybrid nanoparticles encapsulated in N-doped mesoporous hollow carbon nanospheres as an excellent bifunctional ORR/OER electrocatalyst in alkaline electrolyte. The Fe/Mn-N-C catalyst is synthesized via pyrolysis of bimetal ion-incorporated polydopamine nanospheres and shows impressive ORR electrocatalytic activity superior to Pt/C and good OER activity close to RuO2 catalyst in alkaline environment. When tested in Zn-air battery, the Fe/Mn-N-C catalyst demonstrates excellent ultimate performance including power density, durability, and cycling. This work reports the bimetal Fe/Mn-N-C as a highly efficient bifunctional electrocatalyst and may afford useful insights into the design of sustainable transition-metal-based high-performance electrocatalysts.
Keyphrases