Login / Signup

Anhydrosaccharides-A new class of the fragile plastic crystals.

Ewa KamińskaOlga MadejczykMagdalena TarnackaKarolina JurkiewiczKamila WolnicaWioleta Edyta Śmiszek-LindertKamil KamińskiMarian Paluch
Published in: The Journal of chemical physics (2018)
In this paper, 1,6-anhydro-β-D-glucopyranose (anhGLU), 1,6-anhydro-β-D-mannopyranose (anhMAN), and 1,6-anhydro-β-D-galactopyranose (anhGAL), three new materials that form the Orientationally Disordered Crystal (ODIC) phase, have been thoroughly investigated using various experimental techniques. All measurements clearly indicated that these compounds possess a series of very interesting physical properties that are considerably different than those reported for ordinary plastic crystals. X-Ray diffraction investigations have revealed enormously long-range static correlations between molecules, reaching even 120 Å. Moreover, dielectric studies showed that besides Freon 113, the investigated anhydrosaccharides are the most fragile systems that form the ODIC phase. Further analysis of Fourier transform infrared spectra indicated that such peculiar behavior of anhydrosaccharides might be closely related to multidirectional H-bonds of various strengths that most likely affect the number of available conformations, density states, and the potential barriers in the energy landscape of these compounds. This is consistent with the results from previous reports [L. C. Pardo, J. Chem. Phys. 124, 124911 (2006) and Th. Bauer et al., J Chem. Phys. 133, 144509 (2010)] showing that the higher fragility of Freon 112 as well as a mixture of 60% succinonitrile and 40% glutaronitrile (60SN-40GN) can be closely related to the enhanced conformational ability and additional disorder introduced by various substituents, which further make energy landscape more complex. Finally, by studying the properties of 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose (ac-anhGLU) it was found that besides the shape of the molecules, H-bonds or generally strong intermolecular interactions are extremely important parameters contributing to the ability to form the plastic phase. This is in line with current observations that in most cases the ODIC phase is created in highly interacting compounds.
Keyphrases
  • single cell
  • physical activity
  • high resolution
  • magnetic resonance imaging
  • room temperature
  • emergency department
  • single molecule
  • drug induced