Typing of semen-containing mixtures using ARMS-based semen-specific CpG-InDel/STR markers.
Zeqin LiYidan LiNa LiuFang YuanFeng LiuJinding LiuKeming YunJiangwei YanGengqian ZhangPublished in: International journal of legal medicine (2022)
Mixed traces are common biological materials found at crime scenes, and their identification remains a significant challenge in the field of forensic genetics. In recent years, DNA methylation has been considered as a promising approach for body fluid identification, and length polymorphic loci are still the preferred markers for personal identification. In this study, we used tissue-specific CpG sites with linked insertion or deletion (InDel) or short tandem repeat (STR) markers (CpG-InDel/STR) for both body fluid and individual identification. The tissue-specific CpG loci, which were all selected from the previous reports, were analyzed using a combination of bisulfite conversion and amplification refractory mutation system-multiprimer-PCR technology. InDels or STRs, which were selected within 400 bp upstream or downstream of the semen-specific CpG loci, were analyzed using a capillary electrophoresis platform. Eventually, we successfully constructed a panel containing 17 semen-specific CpG-InDel/STR compound markers compassing 21 InDels/STRs, 3 body-fluid positive controls (vaginal secretion-, saliva-, and blood-specific CpG), and 1 gender identification locus. Using this panel, full genotyping of individuals could be obtained successfully with 50 ng DNA input. Semen stains stored at room temperature for 7 months and degraded samples that were heat treated for up to 6 h were still identified efficiently. For semen containing mixed stains, it is also useful when the semen content is as low as 3.03%. Moreover, the cumulative discrimination power of this panel is 0.9999998. In conclusion, it is a robust panel enabling the validation of both the tissue source and individual identification of semen containing mixed stains and can be employed as an alternative solution for forensic case investigation.