Login / Signup

Kappa Free Light Chains in the Context of Blood Contamination, and Other IgA- and IgM-Related Cerebrospinal Fluid Disease Pattern.

Malte Johannes HannichAlexander DresselKathrin BuddeAstrid PetersmannMatthias NauckMarie Süße
Published in: Cells (2021)
In this retrospective, monocentric cohort study, we tested if an intrathecal free light chain kappa (FLC-k) synthesis reflects not only an IgG but also IgA and IgM synthesis. We also analysed if FLC-k can help to distinguish between an inflammatory process and a blood contamination of cerebrospinal fluid (CSF). A total of 296 patient samples were identified and acquired from patients of the department of Neurology, University Medicine Greifswald (Germany). FLC-k were analysed in paired CSF and serum samples using the Siemens FLC-k kit. To determine an intrathecal FLC-k and immunoglobulin (Ig) A/-M-synthesis we analysed CSF/serum quotients in quotient diagrams, according to Reiber et al. Patient samples were grouped into three cohorts: cohort I (n = 41), intrathecal IgA and/or IgM synthesis; cohort II (n = 16), artificial blood contamination; and the control group (n = 239), no intrathecal immunoglobulin synthesis. None of the samples had intrathecal IgG synthesis, as evaluated with quotient diagrams or oligoclonal band analysis. In cohort I, 98% of patient samples presented an intrathecal synthesis of FLC-k. In cohort II, all patients lacked intrathecal FLC-k synthesis. In the control group, 6.5% presented an intrathecal synthesis of FLC-k. The data support the concept that an intrathecal FLC-k synthesis is independent of the antibody class produced. In patients with an artificial intrathecal Ig synthesis due to blood contamination, FLC-k synthesis is lacking. Thus, additional determination of FLC-k in quotient diagrams helps to discriminate an inflammatory process from a blood contamination of CSF.
Keyphrases