Login / Signup

Engineering Hierarchical Co@N-Doped Carbon Nanotubes/α-Ni(OH)2 Heterostructures on Carbon Cloth Enabling High-Performance Aqueous Nickel-Zinc Batteries.

Longzhen ZhuBan FeiYulan XieDaoping CaiQidi ChenHongbing Zhan
Published in: ACS applied materials & interfaces (2021)
Searching for high-performance Ni-based cathodes plays an important role in developing better aqueous nickel-zinc (Ni-Zn) batteries. For this purpose, herein, we demonstrate the design and synthesis of ultrathin α-Ni(OH)2 nanosheets branched onto metal-organic frameworks (MOFs)-derived 3D cross-linked N-doped carbon nanotubes encapsulated with tiny Co nanoparticles (denoted as Co@NCNTs/α-Ni(OH)2), which are directly supported on a flexible carbon cloth (CC). An aqueous Ni-Zn battery employing the hierarchical CC/Co@NCNTs/α-Ni(OH)2 as the binder-free cathode and a commercial Zn plate as the anode is fabricated, which displays an ultrahigh capacity (316 mAh g-1) and energy density (540.4 Wh kg-1) at 1 A g-1 as well as excellent rate capability (238 mAh g-1 at 10 A g-1) and superior cycling performance (about 84% capacity retention after 2000 cycles at 10 A g-1). The impressive electrochemical performance might benefit from the rich active sites, rapid electron transfer, cushy electrolyte access, rapid ion transport, and robust structural stability. In addition, the quasi-solid-state CC/Co@NCNTs/α-Ni(OH)2//Zn batteries are also successfully assembled with polymer electrolyte, indicating the great potential for portable and wearable electronics. This work might provide important guidance for constructing carbon-based hybrid materials directly supported on conductive substrates as high-performance electrodes for energy-related devices.
Keyphrases
  • metal organic framework
  • solid state
  • carbon nanotubes
  • ionic liquid
  • reduced graphene oxide
  • ion batteries
  • quantum dots
  • blood pressure
  • mass spectrometry
  • room temperature
  • climate change