Login / Signup

The mystery of Ph 3 PS revealed in magic-size Ag-S cluster nucleation.

Wei-Hong WuYu-Quan GaoYu-Fei LinYun-Yue YuanCai-Hong ZhanZhan-Guo Jiang
Published in: Dalton transactions (Cambridge, England : 2003) (2022)
The synthesis of atomically precise semiconductors Ag-S clusters is a subject of intense research interest, yet the formation mechanism of such nanoclusters remains obscure due to their uncontrolled fast nucleation process in solution. Herein, we have investigated the reaction mechanism responsible for {Ag 32 S 3 } nucleation using UV, ESI-MS, NMR and SCXRD analyses. Triphenylphosphorus sulfide (PPh 3 S) was surprisingly found to slow down the kinetic process of the cluster nucleation. Furthermore, a key precursor [Ag 2 (Ph 3 PS) 4 ] 2+ was captured, which was attacked by Ag n (CCBu t ) m and traces of water to generate {Ag 32 S 3 }. This mechanism provides valuable new insights into the synthesis of inorganic magic-size clusters.
Keyphrases
  • quantum dots
  • highly efficient
  • visible light
  • ms ms
  • solid state
  • sensitive detection
  • mass spectrometry
  • multiple sclerosis
  • high resolution
  • single cell
  • single molecule