Formal Lossen Rearrangement/Alkenylation or Annulation Cascade of Heterole Carboxamides with Alkynes Catalyzed by CpRhIII Complexes with Pendant Amides.
Takayuki YamadaYu ShibataKen TanakaPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
It has been established that a cyclopentadienyl (Cp) RhIII complex with two aryl groups and a pendant amide moiety catalyzes the formal Lossen rearrangement/alkenylation cascade of N-pivaloyl heterole carboxamides with internal alkynes, leading to alkenylheteroles. Interestingly, the use of sterically demanding internal alkynes afforded not the alkenylation but the [3+2] annulation products ([5,5]-fused heteroles). In these reactions, the pendant amide moiety of the CpRhIII complex may accelerate the formal Lossen rearrangement. The use of five-membered heteroles may deter reductive elimination to form strained [5,5]-fused heteroles; instead, protonation proceeds to give the alkenylation products. Bulky alkyne substituents accelerate the reductive elimination to allow the formation of the [5,5]-fused heteroles.
Keyphrases