Effects of Muscle Fatigue and Recovery on the Neuromuscular Network after an Intermittent Handgrip Fatigue Task: Spectral Analysis of Electroencephalography and Electromyography Signals.
Lin-I HsuKai-Wen LimYing-Hui LaiChen-Sheng ChenLi-Wei ChouPublished in: Sensors (Basel, Switzerland) (2023)
Mechanisms underlying exercise-induced muscle fatigue and recovery are dependent on peripheral changes at the muscle level and improper control of motoneurons by the central nervous system. In this study, we analyzed the effects of muscle fatigue and recovery on the neuromuscular network through the spectral analysis of electroencephalography (EEG) and electromyography (EMG) signals. A total of 20 healthy right-handed volunteers performed an intermittent handgrip fatigue task. In the prefatigue, postfatigue, and postrecovery states, the participants contracted a handgrip dynamometer with sustained 30% maximal voluntary contractions (MVCs); EEG and EMG data were recorded. A considerable decrease was noted in EMG median frequency in the postfatigue state compared with the findings in other states. Furthermore, the EEG power spectral density of the right primary cortex exhibited a prominent increase in the gamma band. Muscle fatigue led to increases in the beta and gamma bands of contralateral and ipsilateral corticomuscular coherence, respectively. Moreover, a decrease was noted in corticocortical coherence between the bilateral primary motor cortices after muscle fatigue. EMG median frequency may serve as an indicator of muscle fatigue and recovery. Coherence analysis revealed that fatigue reduced the functional synchronization among bilateral motor areas but increased that between the cortex and muscle.