The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation.
Qiheng HeYi YangPeicong GeSining LiXiaoke ChaiZhongqiu LuoJizong ZhaoPublished in: Journal of neurointerventional surgery (2024)
A brain-computer interface (BCI) serves as a direct communication channel between brain activity and external devices, typically a computer or robotic limb. Advances in technology have led to the increasing use of intracranial electrical recording or stimulation in the treatment of conditions such as epilepsy, depression, and movement disorders. This indicates that BCIs can offer clinical neurological rehabilitation for patients with disabilities and functional impairments. They also provide a means to restore consciousness and functionality for patients with sequelae from major brain diseases. Whether invasive or non-invasive, the collected cortical or deep signals can be decoded and translated for communication. This review aims to provide an overview of the advantages of endovascular BCIs compared with conventional BCIs, along with insights into the specific anatomical regions under study. Given the rapid progress, we also provide updates on ongoing clinical trials and the prospects for current research involving endovascular electrodes.