Login / Signup

Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures.

Supratik KarJerzy Leszczynski
Published in: Toxics (2019)
Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity of these studied mixtures is completely different to the single components, which makes the toxicity evaluation of mixtures more critical and challenging. Interactions of individual chemicals in a mixture can result in multifaceted and considerable deviations in the apparent properties of its ingredients. It results in synergistic or antagonistic effects as opposed to the ideal case of additive behavior i.e., concentration addition (CA) and independent action (IA). The CA and IA are leading models for the assessment of joint activity supported by pharmacology literature. Animal models for toxicity testing are time- and money-consuming as well as unethical. Thus, computational approaches are already proven efficient alternatives for assessing the toxicity of chemicals by regulatory authorities followed by industries. In silico methods are capable of predicting toxicity, prioritizing chemicals, identifying risk and assessing, followed by managing, the risk. In many cases, the mechanism behind the toxicity from species to species can be understood by in silico methods. Until today most of the computational approaches have been employed for single chemical's toxicity. Thus, only a handful of works in the literature and methods are available for a mixture's toxicity prediction employing computational or in silico approaches. Therefore, the present review explains the importance of evaluation of a mixture's toxicity, the role of computational approaches to assess the toxicity, followed by types of in silico methods. Additionally, successful application of in silico tools in a mixture's toxicity predictions is explained in detail. Finally, future avenues towards the role and application of computational approaches in a mixture's toxicity are discussed.
Keyphrases
  • oxidative stress
  • oxide nanoparticles
  • molecular docking
  • magnetic resonance imaging
  • transcription factor
  • current status
  • protein kinase
  • data analysis