Login / Signup

Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.

Kanupriya Kalia Hehir
Published in: Journal of bioinformatics and computational biology (2018)
ARD and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -norm priors are used for the estimation of wire weights of RNN. Results of GRN inference experiments show that ARD-RNN, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -RNN have similar best accuracies on the simulated time series. The ARD-RNN is more accurate than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -RNN, ML-RNN, and mostly more accurate than the reference algorithms on the experimental time series. The effectiveness of ARD-RNN for inferring small-scale GRNs using gene expression time series of limited length is empirically verified.
Keyphrases
  • gene expression
  • machine learning
  • deep learning
  • single cell