Time to Fight: Molecular Mechanisms of Age-Related Resistance.
Lanxi HuLi YangPublished in: Phytopathology (2019)
Plant age is a crucial factor in determining the outcome of a host-pathogen interaction. In successive developmental stages throughout their life cycles, plants face dynamic changes in biotic and abiotic conditions that create distinct ecological niches for host-pathogen interactions. As an adaptive strategy, plants have evolved intrinsic regulatory networks that integrate developmental signals with those from pathogen perception and defense activation. As a result, amplitude and timing of defense responses are optimized, so as to balance the cost and benefit of immunity activation. A general term "age-related resistance" refers to a gain of disease resistance against a certain pathogen when plants reach a relatively mature stage. Age-related resistance is a common observation on fruits, vegetables, and row crops for their resistance against viruses, bacteria, fungi, oomycetes pathogens, and insects. This review focuses on the recent advances in understanding the molecular mechanisms of how plants coordinate developmental timing and immune response.