Login / Signup

Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion.

Jiaxin HouWenwen DingYancong FengLingling ShuiYao WangHao LiNan LiGuofu Zhou
Published in: Polymers (2017)
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key problem, we introduced a novel fluorinated polyacrylate-poly(1H,1H,2H,2H-perfluoroctylmethacrylate (PFMA) to construct micron/submicron-scale dielectric layer via facile spray coating of nanoemulsion for replacing the most common Teflon AF series. All the results illustrated that, continuous and dense PFMA film with surface relief less than 20 nm was one-step fabricated at 110 °C, and exhibited much higher static water contact angle of 124°, contact angle variation of 42°, dielectric constant of about 2.6, and breakdown voltage of 210 V than Teflon AF 1600. Particularly, soft and highly compatible polyacrylate mainchain assigned five times much better adhesiveness than common adhesive tape, to PFMA layer. As a promising option, PFMA dielectric layer may further facilitate tremendous development of electrowetting performances and applications.
Keyphrases
  • high resolution
  • reduced graphene oxide
  • mass spectrometry
  • ionic liquid