Login / Signup

A link model approach to identify congestion hotspots.

Aleix BassolasSergio GómezAlexandre Arenas
Published in: Royal Society open science (2022)
Congestion emerges when high demand peaks put transportation systems under stress. Understanding the interplay between the spatial organization of demand, the route choices of citizens and the underlying infrastructures is thus crucial to locate congestion hotspots and mitigate the delay. Here we develop a model where links are responsible for the processing of vehicles, which can be solved analytically before and after the onset of congestion, and provide insights into the global and local congestion. We apply our method to synthetic and real transportation networks, observing a strong agreement between the analytical solutions and the Monte Carlo simulations, and a reasonable agreement with the travel times observed in 12 cities under congested phase. Our framework can incorporate any type of routing extracted from real trajectory data to provide a more detailed description of congestion phenomena, and could be used to dynamically adapt the capacity of road segments according to the flow of vehicles, or reduce congestion through hotspot pricing.
Keyphrases
  • molecular dynamics
  • big data
  • artificial intelligence
  • deep learning
  • liquid chromatography
  • infectious diseases