Login / Signup

Experimental evidence for defect tolerance in Pb-halide perovskites.

Naga Prathibha JastiIgal LevineYishay Isai FeldmanGary HodesSigalit AharonDavid Cahen
Published in: Proceedings of the National Academy of Sciences of the United States of America (2024)
The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.
Keyphrases
  • heavy metals
  • solar cells
  • aqueous solution
  • healthcare
  • electronic health record
  • health information
  • quality improvement
  • ionic liquid
  • data analysis