Login / Signup

Metallic Wood through Deep-Cell-Wall Metallization: Synthesis and Applications.

Xiaoying XuJonas GaremarkFarsa RamZhen WangYuanyuan Li
Published in: ACS applied materials & interfaces (2024)
Metallic wood combines the unique structural benefits of wood and the properties of metals and is thus promising for applications ranging from heat transfer to electromagnetic shielding to energy conversion. However, achieving metallic wood with full use of wood structural benefits such as anisotropy and multiscale porosity is challenging. A key reason is the limited mass transfer in bulk wood where fibers have closed ends. In this work, programmed removal of cell-wall components (delignification and hemicellulose extraction) was introduced to improve the accessibility of cell walls and mass diffusion in wood. Subsequent low-temperature electroless Cu plating resulted in a uniform continuous Cu coating on the cell wall, and, furthermore, Cu nanoparticles (NPs) insertion into the wood cell wall. A novel Cu NPs-embedded multilayered cell-wall structure was created. The unique structure benefits compressible metal-composite foam, appealing for stress sensors, where the multilayered cell wall contributes to the compressibility and stability. The technology developed for wood metallization here could be transferred to other functionalizations aimed at reaching fine structure in bulk wood.
Keyphrases
  • cell wall
  • mesenchymal stem cells
  • climate change
  • heavy metals
  • drinking water