Login / Signup

Solving the chemical master equation for monomolecular reaction systems and beyond: a Doi-Peliti path integral view.

John J Vastola
Published in: Journal of mathematical biology (2021)
The chemical master equation (CME) is a fundamental description of interacting molecules commonly used to model chemical kinetics and noisy gene regulatory networks. Exact time-dependent solutions of the CME-which typically consists of infinitely many coupled differential equations-are rare, and are valuable for numerical benchmarking and getting intuition for the behavior of more complicated systems. Jahnke and Huisinga's landmark calculation of the exact time-dependent solution of the CME for monomolecular reaction systems is one of the most general analytic results known; however, it is hard to generalize, because it relies crucially on special properties of monomolecular reactions. In this paper, we rederive Jahnke and Huisinga's result on the time-dependent probability distribution and moments of monomolecular reaction systems using the Doi-Peliti path integral approach, which reduces solving the CME to evaluating many integrals. While the Doi-Peliti approach is less intuitive, it is also more mechanical, and hence easier to generalize. To illustrate how the Doi-Peliti approach can go beyond the method of Jahnke and Huisinga, we also find an explicit and exact time-dependent solution to a problem involving an autocatalytic reaction that Jahnke and Huisinga identified as not solvable using their method. Most interestingly, we are able to find a formal exact time-dependent solution for any CME whose list of reactions involves only zero and first order reactions, which may be the most general result currently known. This formal solution also yields a useful algorithm for efficiently computing numerical solutions to CMEs of this type.
Keyphrases
  • density functional theory
  • solid state
  • deep learning
  • protein kinase