Login / Signup

Non-local correlation dynamics in two-dimensional graphene.

Abdel-Baset A MohamedAbdel-Haleem Abdel-AtyMontasir QasymehHichem Eleuch
Published in: Scientific reports (2022)
We explore the non-local correlation dynamics in a Graphene sheet of disordered electrons in a two-dimensional honeycomb lattice, containing two sublattices, induced by the interaction range of impurity potentials of two Dirac points. The Bell function, uncertainty-induced non-locality, and concurrence are used to investigate the formation and robustness of the non-local correlation between the honeycomb lattice and the Dirac point. The generated lattice-point non-local correlations are explored when the lattice-point system is initially in the uncorrelated state. Due to the lattice-point interaction, the resulting Bell-function non-locality and entanglement concurrence satisfy the hierarchy principle. The generated uncertainty-induced non-locality correlation has a higher degree of stability and robustness than the Bell non-locality and concurrence. We analyze the robustness of the initial maximal non-local correlations under the effects of the band parameter, the intravalley scattering processes, the wave numbers, and the intrinsic decoherence. The formation and stability of lattice-point correlations are highly dependent on the honeycomb lattice and Dirac point characteristics.
Keyphrases
  • high glucose
  • diabetic rats
  • blood pressure
  • heart rate
  • resistance training
  • ionic liquid