Login / Signup

Impact of Subolesin and Cystatin Knockdown by RNA Interference in Adult Female Haemaphysalis longicornis (Acari: Ixodidae) on Blood Engorgement and Reproduction.

Md Khalesur RahmanMohammad Saiful IslamMyung Jo You
Published in: Insects (2018)
Currently, multi-antigenic vaccine use is the method of choice for the strategic control of ticks. Therefore, determining the efficacy of combined antigens is a promising avenue of research in the development of anti-tick vaccines. The antigen responsible for blood intake and reproduction has proven suitable as a vaccine antigen. It has been shown to silence Haemaphysalis longicornis salivary cystatin (HlSC-1) and subolesin by RNA interference. Adult unfed female ticks were injected with double-stranded RNA of (A) subolesin, (B) cystatin, (C) subolesin plus cystatin, and (D) injection buffer, then fed alongside normal unfed males up to spontaneous drop-down. The percentage of knockdowns was determined by real-time polymerase chain reaction. Sixty-three percent and 53% knockdown rates were observed in subolesin and cystatin double-stranded RNA-injected ticks respectively, while 32 and 26% knockdown rates of subolesin and cystatin transcript were observed in subolesin plus cystatin double-stranded RNA-injected ticks. Subolesin and/or cystatin knockdown causes a significant (p < 0.05) reduction in tick engorgement, egg mass weight, and egg conversion ratio. Most importantly, combined silencing did not act synergistically, but caused a similarly significant (p < 0.05) reduction in tick engorgement, egg mass weight, and egg conversion ratio. Therefore, the elucidation of multiple antigens may be helpful in the future of vaccines.
Keyphrases
  • nucleic acid
  • body mass index
  • binding protein
  • weight loss
  • weight gain
  • immune response
  • current status