Login / Signup

Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol.

Yongle GuoXinwen GuoChunshan SongXinghua HanHongyang LiuZhongkui Zhao
Published in: ChemSusChem (2019)
To develop a new and efficient CO2 -to-methanol catalyst is of extreme significance but still remains a challenge. Herein, an innovative indirect two-step strategy is reported to synthesize a highly efficient capsule-structured copper-based CO2 -to-methanol catalyst (CZA-r@CZM). It consists of a structurally reconstructed millimeter-sized Cu/ZnO/Al2 O3 core (CZA-r) with intensified Cu-ZnO interactions, which is made by a facile hydrothermal treatment in an alkaline aqueous solution, and a Cu/ZnO/MgO (CZM) shell prepared by an ethylene glycol-assisted physical coating method. The CZA-r core displays 2.7 times higher CO2 hydrogenation activity with 2.0 times higher CO selectivity than the previously reported Cu/ZnO/Al2 O3 (CZA-p), whereas the CZM shell can efficiently catalyze hydrogenation of the as-formed CO from the CZA-r core to methanol as it passes through the shell. As a result, the developed capsule-structured CZA-r@CZM catalyst exhibits 2.4 times higher CO2 conversion with 1.8 times higher turnover frequency and 2.3-fold higher methanol space-time yield than the CZA-p catalyst (729.8 vs. 312.6 gMeOH  kgcat -1  h-1 ). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) experiments reveal that the CO2 hydrogenation reaction proceeds through a reverse water-gas shift reaction followed by a CO hydrogenation pathway via an *H3 CO intermediate. This work not only produces an efficient CO2 -to-methanol catalyst, but also opens a new avenue for designing superior catalysts for other consecutive transformations.
Keyphrases