Login / Signup

Mineral Content Variation in Leaves, Stalks, and Seeds of Celery (Apium graveolens L.) Genotypes.

Mandeep SinghUsha NaraNeeraj RaniDharminder PathakManjeet Kaur SanghaKirandeep Kaur
Published in: Biological trace element research (2022)
Celery is an important nutritionally rich crop in the family Apiaceae. It is cultivated worldwide for food as well as for use in pharmaceutics. It is an excellent source of minerals, vitamins, and phytochemicals. Identification of superior genotypes with improved nutritional content is the requirement to develop cultivars for commercial cultivation. For mineral analysis of celery, an experiment was carried out taking 20 diverse genotypes. These genotypes were analysed for macro- and micronutrients which include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and sodium (Na). The study revealed high content of K (20.3-26.1 mg/g dry weight (DW)) and Zn (0.09-0.14 mg/g DW) in leaves while the stalks were rich in Ca (41.5-51.3 mg/g DW) and Na (5.2-8.0 mg/g DW). High contents of P (5.2-6.8 mg/g DW), Fe (0.41-0.56 mg/g DW), Cu (0.015-0.026 mg/g DW), and Mn (0.020-0.029 mg/g DW) were observed in seeds. Based on the mineral content, three genotypes, viz., PAU2, PAU4, and PAU7, were found to be superior in terms of mineral composition in leaves, stalks, and seeds. Cluster analysis divided the genotypes into two major groups. These genotypes can be used in crosses as they showed great potential for use in biofortification. This study opens newer avenues for future research, encouraging researchers to enhance the product quality and production efficiency of the leaves, stalks, and seeds valuable for human consumption.
Keyphrases
  • metal organic framework
  • endothelial cells
  • body mass index
  • physical activity
  • risk assessment
  • weight loss
  • data analysis