Login / Signup

3-O-Carbamoyl-5,7,20-O-trimethylsilybins: Synthesis and Preliminary Antiproliferative Evaluation.

Sitong WuGuanglin ChenQiang ZhangGuangdi WangQiao-Hong Chen
Published in: Molecules (Basel, Switzerland) (2021)
To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Keyphrases
  • prostate cancer
  • cell proliferation
  • radical prostatectomy
  • signaling pathway
  • high intensity
  • machine learning
  • oxidative stress
  • risk assessment
  • pi k akt
  • cell cycle arrest
  • combination therapy