Login / Signup

An aorta ECM extracted hydrogel as a biomaterial in vascular tissue engineering application.

Khadijeh BaajiMohamad Pezeshki-ModaressSarah Rajabi
Published in: Progress in biomaterials (2022)
Biological scaffolds have been undergoing significant growth in tissue engineering applications over the last years. Biopolymers extracted from ECM with various protein factors and other biological agents have been active in restoring damaged tissue. In the present study, bioactive scaffold is prepared from bovine aorta extracted natural polymeric hydrogel with advantages of availability and cost-effectiveness. The biological scaffolds were prepared through freeze-drying method to make a 3D sponge with appropriate structure, well-defined architecture and interconnected pores for vascular tissue engineering, and studied the effect of aorta hydrogel concentrations (1, 2, 3, and 4% w/v) on the scaffolds. The prepared biological scaffolds were analyzed by mechanical tests, FTIR, SEM, porosity and PBS absorption. Moreover, the morphology and proliferation of human umbilical vein cord cells on the 3D sponges were investigated. Histological analysis including, Masson trichrome (MT), hematoxylin and eosin (H&E), Verhoeff/Van Gieson (VVG) and alcian blue (AB) revealed that during this process the main components of aorta extracellular matrix containing collagen, elastin, and glycosaminoglycan were well preserved. The obtained results revealed that the scaffolds porosity were more than 90%. The Aorta-ECM4% enabled HUVECs to survive, proliferate and migrate better than 2% and 3% aorta-ECM.
Keyphrases
  • tissue engineering
  • extracellular matrix
  • aortic valve
  • pulmonary artery
  • coronary artery
  • drug delivery
  • pulmonary hypertension
  • signaling pathway
  • single cell
  • cancer therapy
  • small molecule
  • cell proliferation