Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration.
Yilin GaoLang LiuBin ShenXiaofeng ChenLi WangLi-Ya WangWei FengChunhui HuangFuyou LiPublished in: ACS biomaterials science & engineering (2017)
Inorganic nanoparticles have emerged as attractive materials for cancer research, because of their exceptional physical properties and multifunctional engineering. However, inorganic nanoparticle accumulation in the tumors located in the abdominal cavity after intravenous (IV) administration is confined because of the peritoneum-plasma barrier. To improve this situation, we developed lanthanide-doped upconversion nanoparticles (UCNPs), coated by amphiphilic polyethylene glycol (P-PEG), serving as a representative of inorganic nanoparticles. Following intraperitoneal (IP) administration into the peritoneal metastatic carcinomatosis models, UCNPs coated by P-PEG (P-PEG-UCNPs) passively accumulated in the cancerous tissues at a larger amount than that in the main normal organs. On the basis of spatial proximity, P-PEG-UCNPs administrated via the IP route exhibited higher passive accumulation in the tumors in the abdominal cavity compared to that via the IV route. It is suggested that IP administration could be a promising strategy for inorganic nanoparticles to be efficaciously applied in peritoneal cancer research.