Login / Signup

Dual quantitative PCR assays for the rapid detection of Trichophyton indotineae from clinical samples.

Audrey BaronSamia HamaneMaud Gits-MuselliLina LegendreMazouz BenderdoucheAnselme MinguiThéo Ghelfenstein-FerreiraAlexandra SerrisSarah Dellière
Published in: Medical mycology (2024)
Trichophyton indotineae is an emerging species of the Trichophyton mentagrophytes complex (TMC), responsible for an epidemic of widespread hairless skin infections that is frequently (50-70%) resistant to terbinafine. In order to initiate appropriate treatment as quickly as possible without waiting for culture positivity (10-15 days) and molecular identification from the strain, we developed a dual quantitative PCR (qPCR) for the direct detection of T. indotineae in clinical samples. We first designed a T. indotineae specific qPCR assay (TI-qPCR) targeting a single specific polymorphism in the internal transcribed spacer region. Although none of the 94 non-dermatophyte and 7 dermatophyte species were amplified, this TI-qPCR allowed amplification of other TMC species at a lower yield. With equal amounts (0.1 ng) of DNA per reaction, the mean quantitative cycle (Cq) values for T. indotineae and non-indotineae TMC were 27.9 (±0.1) and 38.9 (±0.3), respectively. Therefore, we normalised this assay against a previously validated pan-dermatophyte qPCR assay (PD-qPCR) and relied on the ΔCq [(TI-qPCR) - (PD-qPCR)] to identify T. indotineae versus other TMC species. Dual assay was validated using 86 clinical samples of culture-confirmed T. indotinea and 19 non-indotineae TMC cases. The mean ΔCq for non-indotineae TMC was 9.6 ± 2.7, whereas the ΔCq for T. indotinea was -1.46 ± 2.1 (p < 0.001). Setting the ΔCq at 4.5 as a cut-off value resulted in 100% specificity for the detection of T. indotineae. This dual qPCR assay quickly detects T. indotineae from skin scrapings, aiding in early diagnosis and treatment for patients with suspected infection.
Keyphrases
  • high throughput
  • real time pcr
  • soft tissue
  • label free
  • combination therapy
  • loop mediated isothermal amplification
  • genetic diversity
  • sensitive detection
  • circulating tumor cells
  • cell free