Login / Signup

Graphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices.

Yongjun ShinJunyoung KwonYeonsu JeongKenji WatanabeTakashi TaniguchiSeongil ImGwan-Hyoung Lee
Published in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.
Keyphrases
  • carbon nanotubes
  • room temperature
  • walled carbon nanotubes
  • working memory
  • climate change
  • risk assessment
  • gold nanoparticles
  • solid state
  • atomic force microscopy
  • single molecule