Login / Signup

Using boryl-substitution and improved Suzuki-Miyaura cross-coupling to access new phosphorescent tellurophenes.

Christina A BraunNicole MartinekYuqiao ZhouMichael J FergusonEric Rivard
Published in: Dalton transactions (Cambridge, England : 2003) (2019)
A new di(isopropoxy)boryl -B(OiPr)2 tellurophene precursor is described, from which several previously inaccessible phosphorescent borylated tellurophenes are formed via exchange of the -OiPr groups. One such tellurophene Mes(iPrO)B-Te-6-B(OiPr)Mes, bearing a sterically encumbered mesityl (Mes) substituent at each boron center, exhibits bright yellow-orange phosphorescence in the solid state at room temperature and in the presence of the known quencher O2. Furthermore, Suzuki-Miyaura cross-coupling between the newly prepared borylated tellurophenes and the test substrate 2-bromothiophene was examined with the pre-catalyst Cl(XPhos)Pd(aminobiphenyl). While more electron deficient boryl groups such as catecholatoboryl (-Bcat) yield significant protodeboronation in place of productive C-C bond formation, efficient formation of the desired thiophene-capped tellurophene thienyl-Te-6-thienyl was noted from tellurophenes bearing the readily accessible pinacolatoboryl (-Bpin) and 1,8-naphthalenediaminatoboryl (-Bdan) functional groups. These findings open the door for the efficient synthesis of aryl tellurophenes and polytellurophenes via the ubiquitous Suzuki-Miyaura coupling of borylated tellurophenes, which was previously hampered by protodeboronation.
Keyphrases
  • room temperature
  • solid state
  • ionic liquid
  • light emitting
  • minimally invasive
  • gold nanoparticles
  • transition metal
  • candida albicans