Login / Signup

Ion Valency and Concentration Effect on the Structural and Thermodynamic Properties of Brine-Decane Interfaces with Anionic Surfactant (SDS).

Yiling NanWenhui LiZhehui Jin
Published in: The journal of physical chemistry. B (2021)
Salt ion valency and concentration vary in actual oil reservoirs, which play an important role in the functionalities of surfactant formula during chemical flooding processes to enhance oil recovery. Herein, we report a molecular dynamics (MD) study to investigate the ion valency and concentration effect on the structural and thermodynamic properties of brine-decane interfaces with anionic surfactant (SDS), under typical reservoir conditions (353 K and 200 bar). We use two different cations (Na+ and Ca2+) and a wide range of ion concentrations (up to 3.96 M) to simulate reservoir conditions. We find that ion valency has a significant effect on the molecular configurations, which further influences the thermodynamic properties. Ca2+ ions can have a strong adsorption at the interface due to the strong electrostatic interactions between Ca2+ ions and SDS, which also results in the Cl- ion enrichment at the interface. Furthermore, Ca2+ ions can form pentagon-like SDS-Ca2+ complexes through SDS-Ca2+-SDS cation bridging, which renders a nonuniform distribution of SDS at the interface. On the other hand, the cation bridging density monotonically increases as ion concentration increases for the systems without Ca2+ ions, while first increases, then decreases for the systems with Ca2+ ions. This is because the accumulation of Cl- ions at the interface at high salt concentrations can melt SDS-Ca2+ complexes. This work should provide new insights into the structural and thermodynamic properties of brine-oil interfaces with an anionic surfactant, which can facilitate the optimization of chemical flooding processes.
Keyphrases
  • aqueous solution
  • molecular dynamics
  • protein kinase
  • quantum dots
  • water soluble
  • single molecule
  • preterm infants
  • human milk