Login / Signup

Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca2+/Calcineurin Pathway.

Pei XiaYu ZhengLei DongChunxiao Tian
Published in: ACS chemical neuroscience (2021)
In this study, we investigate the intrinsic mechanism by which an extremely low-frequency electromagnetic field (ELF-EMF) influences neurons in the Schaffer collateral-CA1 (SC-CA1) region of rat hippocampus using electrophysiological techniques. ELF-EMF has an interesting effect on synaptic plasticity: it weakens long-term potentiation and enhances long-term depression. Here, the magnetic field effect disappeared after a blockade of voltage-gated calcium channels and calcineurin, which are key components in the Ca2+/calcineurin pathway, with two blockers, cadmium chloride and cyclosporin A. This fully establishes that the effect of ELF-EMF on synaptic plasticity is mediated by the Ca2+/calcineurin pathway and represents a novel technique for studying the specific mechanisms of action of ELF-EMF on learning and memory.
Keyphrases
  • protein kinase
  • oxidative stress
  • depressive symptoms
  • heavy metals
  • physical activity
  • spinal cord injury
  • angiotensin converting enzyme
  • molecularly imprinted