Focusing the electromagnetic field to 10-6λ for ultra-high enhancement of field-matter interaction.
Xiang-Dong ChenEn-Hui WangLong-Kun ShanCe FengYu ZhengYang DongGuang-Can GuoFang-Wen SunPublished in: Nature communications (2021)
Focusing electromagnetic field to enhance the interaction with matter has been promoting researches and applications of nano electronics and photonics. Usually, the evanescent-wave coupling is adopted in various nano structures and materials to confine the electromagnetic field into a subwavelength space. Here, based on the direct coupling with confined electron oscillations in a nanowire, we demonstrate a tight localization of microwave field down to 10-6λ. A hybrid nanowire-bowtie antenna is further designed to focus the free-space microwave to this deep-subwavelength space. Detected by the nitrogen vacancy center in diamond, the field intensity and microwave-spin interaction strength are enhanced by 2.0 × 108 and 1.4 × 104 times, respectively. Such a high concentration of microwave field will further promote integrated quantum information processing, sensing and microwave photonics in a nanoscale system.