Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(II) wastewater treatment.
Yihao YaoShiming HuangWen ZhouAirong LiuWeijia ZhaoChenyu SongJing LiuWeixian ZhangPublished in: Environmental science and pollution research international (2018)
This study reports the preparation of highly dispersed nanoscale zerovalent iron (nZVI) with core-shell structure decorated onto graphene nanosheets (Gr-NS) to form nZVI-Gr-NS composite. Meanwhile, its excellent performance for concentrated Zn(II) wastewater treatment is also studied. The adsorption of Zn(II) onto nZVI-Gr-NS is well simulated by the pseudo-second-order model, which indicates the adsorption is the rate-controlling step. Moreover, the adsorption isotherms of Zn(II) on the nZVI-Gr-NS can fit well with the Langmuir model. The negative thermodynamic parameters (△GƟ, △HƟ, △SƟ) calculated from the temperature-dependent isotherms indicate that the sorption reaction of Zn(II) is an exothermic and spontaneous process. The high saturation magnetization (37.4 emu g-1) of the nZVI-Gr-NS makes separation of nZVI-Gr-NS-bound Zn(II) easily and quickly from aqueous solution. Most importantly, nZVI-Gr-NS composites not only remove Zn(II) but also spontaneously remove As, Se, and Cu ions from real smelting wastewater samples. This study provides a good solution for heavy metal removal in real wastewater.