Login / Signup

Heavy metal assimilation in maize (Zea mays L.) plants growing near mine tailings.

María Aurora ArmientaMargarita BeltránSarayth MartínezIsrael Labastida
Published in: Environmental geochemistry and health (2019)
Mining is one of the main economic activities in Mexico, and Hidalgo State is one of the main areas; however, this activity produces wastes, such as mine tailings, that are disposed in deposits and may be dispersed on the soils (e.g., agricultural soils). In this study, the concentrations of As and heavy metals in maize plants cultivated in a greenhouse in two soils influenced by tailings were evaluated. Plants were grown for 165 days in the soils (one of them more polluted due to a closer distance to the tailings) and one control soil close to the study zone. Plants' growth was evaluated, and after harvesting, they were divided in six parts: root, stalk, plant leaves, cob sheath, corncob and grains. Plants showed depressed development: small height, slow growth and physiological cob immaturity. Assimilation of As and heavy metals by plants was influenced by the concentration of the contaminants but also by the availability of nutrients. Important concentrations of the metals were recorded in the harvestable parts (grain, stalk and cob sheath). The order of accumulation was Zn > Fe > Pb > As > Cd. Cadmium was not detected in grains, but a maximum concentration of As at 1.02 mg/kg and Pb at 3.9 mg/kg was measured in the dry grain. These As and Pb concentrations do not comply with CODEX Alimentarius standards for maize, which states that the cob must be free of heavy metals. In addition, Pb also exceeds the limits established by the Mexican NOM-247-SSA1-2008 regulation.
Keyphrases
  • heavy metals
  • health risk assessment
  • risk assessment
  • health risk
  • sewage sludge
  • human health
  • physical activity
  • quantum dots
  • metal organic framework