Lattice light sheet imaging of membrane nanotubes between human breast cancer cells in culture and in brain metastases.
Ian ParkerKatrina T EvansKyle EllefsenDevon A LawsonIan F SmithPublished in: Scientific reports (2017)
Membrane nanotubes are cytosolic protrusions with diameters <1 µm that extend between cells separated by tens of µm. They mediate several forms of intercellular communication and are upregulated in diverse diseases. Difficulties in visualizing and studying nanotubes within intact tissues have, however, prompted skepticism regarding their in vivo relevance, and most studies have been confined to cell culture systems. Here, we introduce lattice-light sheet imaging of MDA-MB-231 human breast cancer cells genetically engineered to brightly express membrane-targeted GFP as a promising approach to visualize membrane nanotubes in vitro and in situ. We demonstrate that cultured cells form multiple nanotubes that mediate intercellular communication of Ca2+ signals and actively traffic GFP-tagged membrane vesicles along their length. Furthermore, we directly visualize nanotubes in situ, interconnecting breast cancer cells in live acute brain slices from an experimental mouse model of breast cancer brain metastasis. This amenable experimental system should facilitate the transition of the study of intercellular communication by membrane nanotubes from cell culture to the whole animal.
Keyphrases
- breast cancer cells
- endothelial cells
- induced apoptosis
- mouse model
- cell cycle arrest
- high resolution
- small cell lung cancer
- brain metastases
- white matter
- gene expression
- liver failure
- oxidative stress
- cell proliferation
- induced pluripotent stem cells
- cell adhesion
- endoplasmic reticulum stress
- brain injury
- cancer therapy
- living cells
- drug delivery