Login / Signup

Transcriptome Profiling of Potato (Solanum tuberosum L.) Responses to Root-Knot Nematode (Meloidogyne javanica) Infestation during A Compatible Interaction.

Teresia N MachariaDaniel Bellieny RabeloLucy Novungayo Moleleki
Published in: Microorganisms (2020)
Root-knot nematode (RKN) Meloidogyne javanica presents a great challenge to Solanaceae crops, including potato. In this study, we investigated transcriptional responses of potato roots during a compatible interaction with M. javanica. In this respect, differential gene expression of Solanum tuberosum cultivar (cv.) Mondial challenged with M. javanica at 0, 3 and 7 days post-inoculation (dpi) was profiled. In total, 4948 and 4484 genes were detected, respectively, as differentially expressed genes (DEGs) at 3 and 7 dpi. Functional annotation revealed that genes associated with metabolic processes were enriched, suggesting they might have an important role in M. javanica disease development. MapMan analysis revealed down-regulation of genes associated with pathogen perception and signaling suggesting interference with plant immunity system. Notably, delayed activation of pathogenesis-related genes, down-regulation of disease resistance genes, and activation of host antioxidant system contributed to a susceptible response. Nematode infestation suppressed ethylene (ET) and jasmonic acid (JA) signaling pathway hindering JA/ET responsive genes associated with defense. Genes related to cell wall modification were differentially regulated while transport-related genes were up-regulated, facilitating the formation of nematode feeding sites (NFSs). Several families of transcription factors (TFs) were differentially regulated by M. javanica infestation. Suggesting that TFs play an indispensable role in physiological adaptation for successful M. javanica disease development. This genome-wide analysis reveals the molecular regulatory networks in potato roots which are potentially manipulated by M. javanica. Being the first study analyzing transcriptome profiling of M. javanica-diseased potato, it provides unparalleled insight into the mechanism underlying disease development.
Keyphrases