Login / Signup

Reproductive trait differences drive offspring production in urban cavity-nesting bees and wasps.

Marco MorettiSimone FontanaKelly A CarscaddenJames Scott MacIvor
Published in: Ecology and evolution (2021)
The contrasting and idiosyncratic changes in biodiversity that have been documented across urbanization gradients call for a more mechanistic understanding of urban community assembly. The reproductive success of organisms in cities should underpin their population persistence and the maintenance of biodiversity in urban landscapes. We propose that exploring individual-level reproductive traits and environmental drivers of reproductive success could provide the necessary links between environmental conditions, offspring production, and biodiversity in urban areas. For 3 years, we studied cavity-nesting solitary bees and wasps in four urban green space types across Toronto, Canada. We measured three reproductive traits of each nest: the total number of brood cells, the proportion of parasite-free cells, and the proportion of non-emerged brood cells that were parasite-free. We determined (a) how reproductive traits, trait diversity and offspring production respond to multiple environmental variables and (b) how well reproductive trait variation explains the offspring production of single nests, by reflecting the different ways organisms navigate trade-offs between gathering of resources and exposure to parasites. Our results showed that environmental variables were poor predictors of mean reproductive trait values, trait diversity, and offspring production. However, offspring production was highly positively correlated with reproductive trait evenness and negatively correlated with trait richness and divergence. This suggests that a narrow range of reproductive traits are optimal for reproduction, and the even distribution of individual reproductive traits across those optimal phenotypes is consistent with the idea that selection could favor diverse reproductive strategies to reduce competition. This study is novel in its exploration of individual-level reproductive traits and its consideration of multiple axes of urbanization. Reproductive trait variation did not follow previously reported biodiversity-urbanization patterns; the insensitivity to urbanization gradients raise questions about the role of the spatial mosaic of habitats in cities and the disconnections between different metrics of biodiversity.
Keyphrases
  • genome wide
  • high fat diet
  • induced apoptosis
  • dna methylation
  • healthcare
  • signaling pathway
  • mental health
  • gene expression
  • risk assessment