Login / Signup

Sn-Doping Enhanced Ultrahigh Mobility In1-xSnxSe Phototransistor.

Christy Roshini Paul InbarajVijay Kumar GudelliRoshan Jesus MathewRajesh Kumar UlaganathanRaman SankarHsia Yu LinHung-I LinYu-Ming LiaoHao-Yu ChengKung-Hsuan LinFang Cheng ChouYit-Tsong ChenChih-Hao LeeGuang-Yu GuoYang-Fang Chen
Published in: ACS applied materials & interfaces (2019)
Two-dimensional ternary materials are attracting widespread interest because of the additional degree of freedom available to tailor the material property for a specific application. An In1-xSnxSe phototransistor possessing tunable ultrahigh mobility by Sn-doping engineering is demonstrated in this study. A striking feature of In1-xSnxSe flakes is the reduction in the oxide phase compared to undoped InSe, which is validated by spectroscopic analyses. Moreover, first-principles density functional calculations performed for the In1-xSnxSe crystal system reveal the same effective mass when doped with Sn atoms. Hence, because of an increased lifetime owing to the enhanced crystal quality, the carriers in In1-xSnxSe have higher mobility than in InSe. The internally boosted electrical properties of In1-xSnxSe exhibit ultrahigh mobility of 2560 ± 240 cm2 V-1 s-1 by suppressing the interfacial traps with substrate modification and channel encapsulation. As a phototransistor, the ultrathin In1-xSnxSe flakes are highly sensitive with a detectivity of 1014 Jones. It possesses a large photoresponsivity and photogain (Vg = 40 V) as high as 3 × 105 A W-1 and 0.5 × 106, respectively. The obtained results outperform all previously reported performances of InSe-based devices. Thus, the doping-engineered In1-xSnxSe-layered semiconductor finds a potential application in optoelectronics and meets the demand for faster electronic technology.
Keyphrases