Login / Signup

Maintaining stable transfemoral amputee gait on level, sloped and simulated uneven conditions in a virtual environment.

James A SturkEdward D LemaireEmily H SinitskiNancy L DudekMarkus BesemannJacqueline S HebertNatalie Baddour
Published in: Disability and rehabilitation. Assistive technology (2017)
TFA and NA adapted to non-level conditions by changing their walking speed, step width, and foot clearance. Variability for most parameters increased across conditions, compared to level. TFA walked slower than NA with shorter, wider and longer duration steps (most differences related to speed). ML-MoS did not change compared to level; however, ML-MoS was greater on the prosthetic side than both intact side and NA limbs. Foot clearance and root-mean-square of medial-lateral trunk acceleration were greater on the prosthetic side than the intact side and NA limbs. This research provides a comprehensive analysis of the different adaptations made by people without amputations compared to people with transfemoral amputations over non-level conditions and establishes significant differences between slopes and simulated uneven surfaces for TFA. Implications for Rehabilitation Transfemoral amputation and no amputation groups adapted walking biomechanics when traversing non-level surfaces. Greatest temporal-spatial gait adaptations were walking speed, step width and foot clearance. Gait parameter variability typically increased from the level condition in both groups. Transfemoral amputation group walked slower than no amputation group with shorter, wider steps and longer duration steps. This was related to speed. Transfemoral amputation group had more trunk motion variability on the prosthetic side than no amputation group; could be related to prosthetic fit.
Keyphrases