A Dansyl Amide N-Oxide Fluorogenic Probe Based on a Bioorthogonal Decaging Reaction.
Hong YangYongcheng WangXiang LiYu TengYulin TianPublished in: ChemistryOpen (2021)
A smart fluorescence "turn-on" probe which contained a dansyl amide fluorophore and an N-oxide group was designed based on the bioorthogonal decaging reaction between N-oxide and the boron reagent. The reaction proceeds in a rapid kinetics (k 2 =57.1±2.5 m -1 s -1 ), and the resulting reduction product showcases prominent fluorescence enhancement (up to 72-fold). Time dependent density functional theoretical (TD-DFT) calculation revealed that the process of photoinduced electron transfer (PET) from the N-oxide moiety to the dansyl amide fluorophore accounts for the quenching mechanism of N-oxide. This probe also showed high selectivity over various nucleophilic amino acids and good biocompatibility in physiological conditions. The successful application of the probe in HaloTag protein labeling and HepG2 live-cell imaging proves it a valuable tool for visualization of biomolecules.