Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: IV. Temperature Dependence.
Clyde A DalyCecelia AllisonSteven A CorcelliPublished in: The journal of physical chemistry. B (2019)
In previous papers in the series, the vibrational spectroscopy of CO2 in ionic liquids (ILs) was investigated at ambient conditions. Here, we extend these studies to understand the temperature dependence of the structure, dynamics, and thermodynamics of CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], IL. Using spectroscopic mapping techniques, the infrared absorption spectrum of the CO2 asymmetric stretch mode is simulated at a number of temperatures, and the results are found to be consistent with similar experimental studies. Structural correlation functions are used to reveal the thermodynamics of complete CO2 solvent cage breakdown. The enthalpy and entropy of activation for solvent cage reorganization are found to be 6.9 and 7.6 (kcal/mol)/K, respectively, and these values are similar to the those for spectral, orientational, and translational diffusion. Caging times for CO2 are calculated, and it is shown that the short time dynamics of CO2 are unaffected by temperature, even though the long-time dynamics are highly sensitive to temperature.