A Bayesian Noisy Logic Model for Inference of Transcription Factor Activity from Single Cell and Bulk Transcriptomic Data.
Argenis ArriojasSusan PatalanoJill A MacoskaKourosh ZarringhalamPublished in: bioRxiv : the preprint server for biology (2023)
NextGen RNA sequencing (RNA-Seq) has enabled simultaneous measurement of the expression level of all genes. Measurements can be done at the population level or single-cell resolution. However, direct measurement of regulatory mechanisms, such as Transcription Factor (TF) activity, is still not possible in a high-throughput manner. As such, there is a need for computational models to infer regulator activity from gene expression data. In this work, we introduce a Bayesian methodology that utilizes prior biological knowledge on bio-molecular interactions in conjunction with readily available gene expression measurements to estimate TF activity. The Bayesian model naturally incorporates biologically motivated combinatorial TF-gene interaction logic models and accounts for noise in gene expression data as well as prior knowledge. The method is accompanied by efficiently implemented R and Python software packages as well as a user-friendly web-based interface that allows users to upload their gene expression data and run queries on a TF-gene interaction network to identify and rank putative transcriptional regulators. This tool can be used for a wide range of applications, such as identification of TFs downstream of signaling events and environmental or molecular perturbations, the aberration in TF activity in diseases, and other studies with 'case-control' gene expression data.