Login / Signup

A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite.

Richard J ColchesterErwin J AllesAdrien E Desjardins
Published in: Applied physics letters (2019)
Strongly directional ultrasound sources are desirable for many minimally invasive applications, as they enable high-quality imaging in the presence of positioning uncertainty. All-optical ultrasound is an emerging paradigm that exhibits high frequencies, large bandwidths, and a strong miniaturisation potential. Here, we report the design, modelling, and fabrication of a highly directional fibre-optic ultrasound transmitter that uses a composite of reduced graphene oxide and polydimethylsiloxane as the optical ultrasound generator. The ultrasound transmitter, which had an outer diameter of just 630 μm, generated ultrasound with a pressure exceeding 0.4 MPa for axial distances up to 16 mm, at a large bandwidth of 24.3 MHz. The ultrasound beam exhibited low divergence, with a beam diameter ranging between 0.6 and 2.1 mm for distances between 0 and 16 mm. The presented directional optical ultrasound source is hence well-suited to high-resolution interventional imaging.
Keyphrases