Login / Signup

Direct assembly of multiply oxygenated carbon chains by decarbonylative radical-radical coupling reactions.

Kengo MasudaMasanori NagatomoMasayuki Inoue
Published in: Nature chemistry (2016)
Pentoses and hexoses contain more than three oxygen-bearing stereocentres and are ideal starting materials for the synthesis of multiply oxygenated natural products such as sagittamide D, maitotoxin and hikizimycin. Here we demonstrate new radical-radical homocoupling reactions of sugar derivatives with minimal perturbation of their chiral centres. The radical exchange procedure using Et3B/O2 converted sugar-derived α-alkoxyacyl tellurides into α-alkoxy radicals via decarbonylation and rapidly dimerized the monomeric radicals. The robustness of this process was demonstrated by a single-step preparation of 12 stereochemically diverse dimers with 6-10 secondary hydroxy groups, including the C5-C10 stereohexad of sagittamide D and the enantiomer of the C51-C60 stereodecad of maitotoxin. Furthermore, the optimally convergent radical-radical cross-coupling reaction achieved a one-step assembly of the protected C1-C11 oxygenated carbon chain of the anthelmintic hikizimycin. These exceptionally efficient homo- and heterocoupling methods together provide a powerful strategy for the expedited total synthesis of contiguously hydroxylated natural products.
Keyphrases
  • minimally invasive
  • mass spectrometry
  • simultaneous determination
  • molecularly imprinted
  • structure activity relationship
  • transition metal